
International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 831
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Open IoT testbed utility cum development
framework of virtualized services in terms of

sensor as utility

*Kayalvizhi Jayavel, Meenakshi K, Sundara Kanchana J, Srinivas LNB, Revathi Venkataraman
SRM Institute of Science and Technology, Kattankulathur, Chennai, India

*Corresponding Author: kayalvizhi.j@ktr.srmuniv.ac.in

Abstract
Internet of Things aims at connecting everything,
everywhere, every time. Most of the industries
here predicted billions of connected devices by
2025. Considering the scale, the applications which
evolve will also be multifold. This demands huge
investments in terms of infrastructure: hardware or
software. Taking this into consideration we have
proposed an IoT testing cum development
architectural framework which will enhance the
utilization and reusability factors. The services
offered are data, sensor client, actuator client,
platform and API. We would like to address this
framework as a utility, as users or developers can
use our model as “pay as you go model” or
demand based model instead of traditional “one
pack serves all model”. In “One pack serves all”
the whole service is provided to users as a monthly
or yearly subscription. Traditional frameworks use
proprietary devices which create vendor lock in,
lack of interoperability and migration issues. We
have designed, developed and implemented a
prototype with open source boards and tested the
reusability metrics in terms of time taken and
request-response graphs. We have demonstrated in
this paper about sensor data as service,
performance enhancement achieved in the database
updation and retrieval based on our model.

Keywords: Internet of Things, Testbed,
Development framework, Services, Utility,
Performance enhancement

I Introduction
Internet of Things (IoT) is a technology capable of
equipping the existing things speak to each other
anywhere, anytime. IoT-GSI have described IoT as

the backbone of this era of information.
(International Telecommunication Union, 2017).
The core components of an IoT system are sensors,
actuators and the units which process the data and
commands respectively. Developers deploy need
based applications (S. D. T. Kelly, N. K.
Suryadevara and S. C. Mukhopadhyay, Oct. 2013)
on the processing units to read the data from
sensors or actuate commands to actuators. The
processing unit can be as simple as 8-bit
microcontroller or as powerful as a processor,
which mostly depends on the application in hand.
The choice of microcontrollers needs care as they
are constrained on energy and size. Many have
deployed motes for applications which needs
wireless sensor networking. There is possibility to
employ open source boards such as the Arduino
(Banzi, Massimo, Michael Shiloh, 2014) etc.
This paper uses MQTT protocol as its application
layer protocol. The data transfer between parties is
taken care by a Protocol Broker. Clients can
publish as well as subscribe at various instances of
time. The clients will publish on a “topic” to much
interested clients will subscribe with. The topics
are decided mutually and protocol broker will do
the mediation for proper data transfer.
This paper also provides virtualisation of sensors
and actuators, thereby enhancing the re-usability of
the available infrastructure, and the possibility to
access remotely, adds to the re-usability metrics.
There may be many reasons as why one may not
own a set of devices or needed resources say, cost,
malfunctioning, one-time usage, only testing,
research purpose or mere experimental data
collection, lack of embedded knowledge, lack of

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 832
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

breakout boards to support ESP8266 Wi-Fi module
(current fluctuations). These issues are mitigated
through our service based architectural framework.
We have abstracted the complexities to a software
developer who will use our utility (Controlled offer
of group of services based on user demands)
without worrying about these details.
There exist many simulation tools
(Fritzing/123dcircuits) as a simple solution for the
above-mentioned problem but, they can only
mimic, not the real code deployment happens.
What if you want to test a real SMS from a GSM
module to be sent. Thus, our paper provides a
development and testing utility which offers sensor
data, actuator, platform and API as services. Our
major highlights are zero learning curve for
users/developers, socially reusable with zero
development cost and 24x7 availability,
teaching/testing/experimental platform usable by
academicians, industrialists or analysts.

This paper is formulated with section II
comprising of state of the art. Section III is our
proposed architecture. Section IV is our
implementation and results. Section V is
conclusion and Results.
II. State of the art

Our research is to design, develop, deploy
an open IoT test bed cum development utility
which offers sensor data, actuators, platforms and
API as service. This paper considers sensor data as
service in detail. The other services like actuators,
platforms and API’s are covered in our next paper.
Thus, our research requires literature review at two
levels. There is a need to understand the existing
test bed frameworks, their purpose, the services,
challenges or issues. Secondly to investigate the
way each service offered, their methodology,
merits issues or challenges. Thus, we have
formulated our literature survey in two genres, Test
bed and Service respectively.
(De, P., Raniwala, A., Sharma, S., & Chiueh, T. C.,
2005)The word testbed was almost synonymous to
Wireless Sensor Network Testbed and most of the
boards used are proprietary which lead to
interoperability problems. The main aim of these
testbeds is to check how various network level
protocols and applications perform with non-IP

based sensors networks and was not developed
with IoT in mind. Our initial thought process was
to rectify the issues, but later understood that it is
almost obsolete to think of Sensor networks in
terms of motes, a new paradigm shift of open
source everywhere made us rethink and develop
our architecture.

(Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. ,
2010)The authors of this paper have attempted to
provide an architectural framework to overcome
the current fragmentation and limitation of
solutions, where many “Intranets” of Things exist,
towards a true “Internet” of Things, where all
devices will be part of a globally integrated
system. This paper realized it early we should say,
the need for a unified approach for IoT when many
of them are still busy developing single
applications in silos. They have admitted the agony
of only small group of enthusiasts from academia,
industry and public institutions working to bring
up a unified model for IoT. They have emphasized
the dire need for standardization and ETSI have
made some notable contributions.
(Clement Burin Des Rosiers, 2011) have
developed a Sense Lab- a very large scale opens
Wireless Sensor Network Testbed. This testbed is a
generic testbed which allows experimental
research of protocols used for communication and
algorithms at application level. The important
feature of this testbed is, the algorithms under test
need not be of specific domain or category. There
is scope for improvement on concurrency and
heterogeneity aspects of an IoT experimentation
set up.

(Coulson, et al., 2012) WISEBED was initially
started in 2010 later evolved to include concepts of
virtualization to the existing testbed architecture. It
uses a generic XML-based language (WiseML) to
describe about the experimental, in setting up and
for result storage. The events can be booked using
database backed google calendar or in-memory
storage. This offers access to on-going
experiments through web interface via web
services to adjust parameters, along with
monitoring and collection of data. They have
proposed virtual testbeds and their integration with

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 833
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

physical testbeds. There is scope for improvement
on heterogeneity and node level virtualization as
against testbed level virtualization (resolve access
to same hardware resources) aspects of an IoT
experimentation set up.

Many more community oriented platforms like
Sense Web (Grosky, William I., Aman Kansal,
Suman Nath, Jie Liu, and Feng Zhao, 2007),
Global Sensor Network (Aberer, Karl, Manfred
Hauswirth, and Ali Salehi, 2007), Sensor Base
(Chang, Kevin, Nathan Yau, Mark Hansen, and
Deborah Estrin, 2006)], Iris Net (Gibbons, Phillip
B., Brad Karp, Yan Ke, Suman Nath, and
Srinivasan Seshan, 2003) and Semantic Sensor
Web (Sheth, Amit, Cory Henson, and Satya S.
Sahoo, 2008) have been established which allowed
users to share the data from heterogeneous data
sources.
SenseWeb, an Microsoft’s creation (Grosky,
William I., Aman Kansal, Suman Nath, Jie Liu,
and Feng Zhao, 2007) provides a generic platform
to share, query and visualize sensor data.
SenseWeb provides various tools for data owners
and data users to publish and subscribe the data
respectively. SensorMap is a geographical web
interface provided by SenseWeb to query the
needed data and get the visualization of the same.
Global Sensor Network (GSN) (Aberer, Karl,
Manfred Hauswirth, and Ali Salehi, 2007) offers a
general-purpose infrastructure which can be
programmed based on user needs as against usual
collection only model from a central repository.
The GSN middleware infrastructure attempts to
address heterogeneity by integrating heterogeneous
sensor networks and this is achieved by deploying
the GSN middleware on any computer which is
interested in interacting with one or more sensor
networks.
IrisNet (Gibbons, Phillip B., Brad Karp, Yan Ke,
Suman Nath, and Srinivasan Seshan, 2003)
(Internet-scale Resource-Intensive Sensor Network
Services) aims at providing a sensor web which
can be accessed from anywhere, anytime fulfilling
the requirement of an IoT based system. This
attempt provided multitude of sensors openly
accessible to users from all walks of life.

 Thus, our work attempts to address all the
issues, as to reduce the learning curve, the data
analysts must undergo, to provide categorization
based on sensors granulated at parameter, better
visualization, and removing the dependency of any
coding skills or hardware knowledge required to
create the application that generates the data.
Hence attempting to consolidate, we investigated
testbed papers of varied goals be it educational or
industrial or testing or development, all of them
had one issue in common, they all used proprietary
hardware or software or both. This left the major
challenge of interoperability unattended. Thus, our
work attempts to provide testbed as a utility with
proof of concept to demonstrate that use of open
source boards and technologies comfortably takes
care of the prime requirements of IoT (as stated by
many authors) like heterogeneity, interoperability
and reusability appreciably well.

III. Proposed Architecture
We have proposed an IoT architectural framework
and Infrastructural prototype which is shown in
Figure1a and Figure 2a. Figure 2a explains the
infrastructal details comprising of hardware and
sofware deployments to achieve the utility based
IoT framework.

Figure 1a: IoT architectural framework as utility
The architecture comprises of Device layer,

Communication layer, Aggregation layer, Control
plane, Event Processing and Analytics, Web portal,
Visulaization, API, Device manager, Identity and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 834
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Access management. We have developed a
prototype which can be used for testing and
development purpose. Device layer comprises of
open source boards and sensors and actuators
connected to it. Comminication layer is useful in
communicating the data collected from underlying
sensors and command to actuators from users
using any device to server protocol. Some
examples are MQTT (Message Queueing
Telemetry Transport), CoAP (Constrained
Application Protocol) and XMPP (Extensible
Messaging and Presence Protocol). We have
deployed MQTT for its visible benefits towards
event driven scenarios. Aggregation layer is used
to pack the data from various senor clients as need
or application demands. This will help in scenarios
to avoid redundant data, remove erroneous data,
avoid sending unchanged data and many more.
MQTT protocol broker takes the resposibility as
aggregator. The data received from sensors are
updated to the database via message broker script.
The analyst can use data available in the database
server (Maria DB) and as the event processing
depends on the application in hand, is left to the
user or developer to handle. The visualization
(Figure 1b-1c)is provided by our Dashboard via
our website. Web portal is our website which
accepts requests from local or remote. API
management helps in downloading the APIs for
developers to actuate commands or utilize as

libraries in their code development. Device
management is responsible for monitoring the
underlying hardware including sensors. Platform as
service utilizes the service of the device manager.

Identity and access management controls and
authenticates right users and developers to utilize
our utility based service. We have authentication at

two levels: Web portal at local access and session
login in remote SSH.We have designed and
successfully integrated all of the above to provide
utility based service to users and developers.
Figure 1b: Rainfall Intensity Dashboard
visualization

Figure 1c Gas and Rainfall sensors Dashboard
Visualization

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 835
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Figure 2a: Infrastructural IoT framework as utility
Our utility framework is designed with goal

of offering services at data plane, hardware plane
and software plane. Sensor data is offered as
service at the data plane. Our framework is capable
of providing data in standard data exchange
formats say JSON, XML and CSV. At the hardware
level services can be catagorized as sensor client
and actuator client. The software plane services are
offered at two dimensions namely remote code
porting and API as service.
 The requests from user and developer
reaches our gateway (Pi). The gateway has
Mosquitto protocol broker, a message broker, user
create script, platform as service (paas acript). All
the sensor and actuator clients register to the
protocol broker based on topics provided by the
protocol broker. Sensor clients publish data on the
topic and protocol broker subcribes on that topic.
In case of actuator client, protocol broker publishes
commands on the respective topic and actuator
client subscribes on the same topic. Message
broker script is developed to update the data to the
database for data analysts to work up on or to
create legacy database for later point of usage.
Usercreator script is the login and authentication
module. Paas script enables coder to use shell
remotely. We have deployed MySQL database
server and Apache web server on the server side to
enable data storage and remote access. Figure 2b
summarises the complete data flow in a nutshell.
Figure 2b: Sequence diagram depicting overall
communication.

IV. Implementation and Results

We have implemented our architectural
framework to provide proof of concept. We have
developed our prototype with open source boards.

We have incorporated sensors namely DHT11,
MQ-2, MQ-7, BMP-180, GPS, GSM, Buzzer,
LEDs, RGBs, Color sensors, LM35, Potentiometer
and LCD. The sensors are connected to Sensor
Client 1 and Sensor Client 2. Actuators are
connected to Actuator client and platform as
service with sensors and actuators. The framework
provides features for users and developers to
exploit, according to their skill set and expertise.
Sensor data as service
 Based on the literature survey, one can
classify sensor data collected from sensors after
reaching the message broker via the protocol
broker, should reach the database. We have
deployed Maria DB as our database server. The
idea behind the classification is as follows. If we
consider a scenario with say two sensor clients:
sensor client 1 and sensor client 2. Each sensor
client has variety of sensors say, DHT11, MQ2,
Colour sensor and BMP-180. Except DHT11 every
other sensor sends only one parameter as its
payload value. But there are many sensors like
DHT11 which can measure multiple parameters of
the environment. Having said this, researchers
have sent the data in three styles: all the sensor
readings of a sensor client as a single payload and
updated in single table, all the sensor readings on
change of a sensor client as a single payload and
updated in single table, each sensor readings on
change as separate payload of a sensor client and
updated in single table. And our model is to send
each sensor readings on change as separate
payload of a sensor client and updated in separate
tables. We would like to categorize the updation
models in to 4 broad groups listed below and we
have compared the pros and cons with real data
sources. We have found based on our experimental
model scenario 4 (Respective Topic on Change
Respective Table) performed better, hence adopted
in our model. Table 1 provides the sensor data
from various sensors and Table 2 the analysis chart.
Scenario 1: Single Topic Single Table
Scenario 2: Single Topic on Change Single Table
Scenario 3: Respective Topic on Change Single
Table
Scenario 4: Respective Topic on Change
Respective Table

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 836
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

Table 1: Sensor data from various sensors
Let
Nssensors with Nt topics
Nc denote change in topic
Nci denote change in respective sensor
Nr denote number of records
Nm denote number of messages
Reduce Nr and Nm as much as possible especially
for sensors whose readings hardly change.

Table 2: Analysis data chart
Thus, the above statistics proves that approach 4
with scenario 4 shows the best results compared
among the other scenarios. Let us see in detail how
this per topic per parameter model works better
than per topic per client model.

Figure 3a and 3b: Comparison between one
MQTT topic per client vs per parameter
Figure 3a shows the visual representation of one
MQTT topic per sensor client model. Figure 3b
shows the visual representation of one MQTT topic
per parameter. In our architecture, the sensor
readings published to the protocol broker
(Mosquito in our Pi) will be published again to the
message broker (python script in our Pi) and the
same data after pre-processing to avoid error data
and null values will be sent with recent time stamp
to our database server. The first half of data
transfer between clients and protocol broker will
not have great impact because of the following
reason. Theoretically, only few milliseconds would
be taken for concatenating the strings, which will
be compensated by reducing number of publish.
And, also if any sensor reading was incorrect, then
the whole cycle will be re-done which happens at
very low rate. The actual saving in adopting
approach 4 will be visible only in the second half
of data transfer between message broker and
database. In message broker, parsing the string into
different values and assigning to respective
variables takes up time. Moreover getParameter()
(one of our API) will return same payload, which
creates excessive unused payload. For instance,
consider a sensor client with DHT11 and Gas,
parsing should happen at 2 levels: Parse at sensor
level (DHT11, Gas), Parse at parameter level
(Temp, Hum). And the update time for all the
sensors will be same and there won't be individual
graphs for each sensor.
 Polling is used as an alternative to all the
above. All the parameters are collected and
appended in a single message. And a unique
function which uses global variable for each
function to collect the values. A script runs
continuously as a back-ground process and keeps
collecting data irrespective of call being initiated
and updates the global variable for each parameter.
This obviously consumes excessive processing
cycles.

Both MQTT per client and the polling style
are poor at error handling. The error may be due to
the sensor is faulty or damaged. This disrupts other
sensor data flow. In the former, the valid data

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 837
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

needs to wait for error rectification which is a huge
tradeoff or send with placeholders which incurs
excessive payload. The parsing will be done only
to find the error data and re-subscribe to sensor
client again. If any sensor reading was incorrect or
error, then the whole cycle will redone (happens at
very low rate). But if this situation occurs, one
whole cycle will be skipped. And rate of sensor
data receiving will be reduced by 1 at that
particular instant alone. Additional time
consumption occurs when the program requires
actual value to run, so it should wait for next set of
values.

But in our one, MQTT topic per Sensor
parameter there is no excessive unused payload, no
excessive computational cycles as individual
parameters have individual MQTT topics. And
moreover getParameterj() function would have to
subscribe to the topic only once, get the payload
and return it without any parsing. Figure 4a shows
the updation time via one MQTT per parameter
takes less time to update when compared to when
sent all in one (800msec). Figure 4b shows the
database updation time for Gas and Rainfall
sensors.

Figure 4a: Comparison on updation

time: Approach 4 outperforms

Figure 4b: Sensor database updation

time
V. Conclusion and Future work
We have designed, developed and implemented our
IoT architectural framework through our open
source infrastructural set up. The services offered
are collectively qualified as utility as we are
offering it as on-demand or use as you want.
Necessary graphs are provided to prove
improvement at all levels. Thus our utility based
IoT model have performed well in terms of
request-response ratio, database update and
retrievel interval and utilization factor. We have
demonstrated our model using Message Queueing
Telemetry Transport and we are attempting to
develop a similar model using MQTT-SN. We
would like to add security aspect to our model and
demonstrate this architecture is fool-proof as well.

References

Aberer, Karl, Manfred Hauswirth, and Ali Salehi.

(2007). Infrastructure for data processing in
large-scale interconnected sensor networks.
2007 International Conference on Mobile
Data Management (pp. 198-205). IEEE.

Banzi, Massimo, Michael Shiloh. (2014). Getting
Started with Arduino: The Open Source
Electronics Prototyping Platform. . Maker
Media, Inc., .

Chang, Kevin, Nathan Yau, Mark Hansen, and
Deborah Estrin. (2006). Sensorbase.org-a
centralized repository to slog sensor
network data. Los Angels: National Science
Foundation.

Clement Burin Des Rosiers, G. C. (2011).
SensLAB Very Large Scale Open Wireless
Sensor Network Testbed. Proc. 7th
International ICST Conference on Testbeds
and Research Infrastructures for the
Development. Shanghai, China: The open
archive HAL. Retrieved from sensLAB:
https://hal.inria.fr/inria-00587862

Coulson, G., Porter, B., Chatzigiannakis, I.,
Koninis, C., Fischer, S., Pfisterer, D., . . .
Baumgartner. (2012). Flexible

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019 838
ISSN 2229-5518

IJSER © 2019
http://www.ijser.org

experimentation in wireless sensor
networks. Communications of the ACM, 55,
82-90.

De, P., Raniwala, A., Sharma, S., & Chiueh, T. C.
(2005). Design considerations for a
multihop wireless network testbed. IEEE
Communications Magazine, 43(10), 102-
109.

FIT consortium. (2014). IoT-Lab. Retrieved from
FIT IoT-Lab: https://www.iot-
lab.info/what-is-iot-lab/

Gibbons, Phillip B., Brad Karp, Yan Ke, Suman
Nath, and Srinivasan Seshan. (2003).
Irisnet: An architecture for a worldwide
sensor web. IEEE pervasive computing (pp.
22-33). IEEE.

Grosky, William I., Aman Kansal, Suman Nath, Jie
Liu, and Feng Zhao. (2007). Senseweb: An
infrastructure for shared sensing. IEEE
multimedia.

International Telecommunication Union. (2017,
August 16). ITU . Retrieved from JCA-IoT
and SC&C: http://www.itu.int/en/itu-
t/jca/iot/Pages/default.aspx

Sheth, Amit, Cory Henson, and Satya S. Sahoo.
(2008). Semantic sensor web. IEEE
Internet computing. IEEE.

S. D. T. Kelly, N. K. Suryadevara and S. C.
Mukhopadhyay. (Oct. 2013). Towards the
Implementation of IoT for Environmental
Condition Monitoring in Homes. IEEE
Sensors Journal , 13 (10), pp. 3846-3853.

Zorzi, M., Gluhak, A., Lange, S., & Bassi, A. .
(2010). From today's intranet of things to a
future internet of things: a wireless-and
mobility-related view. IEEE Wireless
Communications, 17(6).

IJSER

http://www.ijser.org/

	II. State of the art
	III. Proposed Architecture
	IV. Implementation and Results
	Sensor data as service

	V. Conclusion and Future work

